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It is shown that using the Hubbard-Statanovich transformation one can derive the asymptotic series
and the remainder term for the partition function of the rigid rotator at high temperatures in a fairly

simple way.
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Even though the rigid-rotator partition function is fair-
ly simple in appearance, it poses quite a bit of problem
when one needs its asymptotic form at high tempera-
tures. The complication arises mainly because the sum-
mation index enters as a square in the exponent. In the
many-body physics problems the Hubbard-Statanovich
(HS) transformation [1] has been found to be very useful
in linearizing the power in the exponent. In the present
problem it turns out that a straightforward application of
the transformation leads to nonconvergence of the sum-
mation. We would like to show in the present Brief Re-
port that a convergence factor together with HS transfor-
mation makes it possible to find the asymptotic form as
well as the remainder term of the partition function of
the rigid rotator in an extremely simple way. The present
method is not only simpler than the earlier methods
given by Mulholland and Joyce [2] but can also be used
when correction terms are to be added to the rotational
energy.

Let the partition function of the rigid rotator be denot-
ed by Z(o). Itis given by [2]

Z(0)=§(2n+1)exp[-—n(n +1)o], (1)

n=0

where o is a dimensionless quantity and inversely propor-
tional to the temperature.

To develop the asymptotic series for Z(o ) at high tem-
peratures we write [2]

Z(o)=2[exp(+0)]f(o), (2)

where f(o) is given by
flo)= 3 (n+1)exp[—(n +1)%0]. (3)
n=0
For the present problem, the HS transformation is
given by

exp(—b2)=7r_l/2f_ dx exp(—x2+2ibx) .
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Using this transformation in expression (3) we can write

f(o)as

1 re
f(o)—‘/—q—rf_wdx[exP(—xZ)]

X § (n+Lexp[2ixVa(n+1)]. @)

n=0

The usefulness of the HS transformation lies in the fact
that it can be used twice if one has also anharmonic terms
of the form (n +1)* in expression (3).

We now introduce a convergence factor

exp[—(n+3)v], (5)

v being a real parameter which goes to zero in the end.
The convergence factor given by (5) is also useful to take
care of the factor (n +1) in expression (4) by writing the
derivative of it with respect to y.

Using expressions (4) and (5) and carrying out summa-
tion over n, we get

flo)=—1

e fj) dx[exp(—x?)]

_9
ay

Xesch[L(y —2iVox)]

This is the exact integral representation of the rigid-
rotator partition function. In order to find the asymptot-
ic series and the remainder, we write the following expan-
sion [3] of the function cscht,

CSCht:‘i—\/‘l—T § (l—ﬂﬂB t2m—1
t o2 Tim +Lym 2
& (—1)k
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where B,,, are Bernoulli numbers, and the last term
which gives the remainder has been written using the
Fourier expansion of Bernoulli polynomials [3].

Consider first the terms m =1-N. Writing
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t=iy— 2iV/ox ) and realizing that only the terms linear
in y survive, we get, after integrating over x, the series

(—=1)™(2' 72" —1)B,,,

m!

N
3 o™ (8)
m=]

This is in agreement with the asymptotic series as given
by Egs. (1) and (3) of Mulholland [2] as well as the one
given by Joyce [2] in his Eqgs. (2.23) and (2.24).

To calculate the value of the term corresponding to 1/¢
in expansion (6), we use the integral representation of the
function w (z) given by [3]

_ i = exp(—t?)dt
w(z) wf —_—,

— o z—t

Imz >0 . 9)

This gives the first term of the asymptotic series as

1
-, (10)
20
again in agreement with [2].

The remainder Ry, after (N +1) terms is given by
the integral of the last term in expression (7), by setting

t=Ly—2iVox).
Z(o)=2 i 1, , Y (=nm"2'm—1B,,
(o)=2exp(;0) Z+?m:] 1
T+ & (=1t
+ N—-1 _2
7 Ve 2 e

Thus we have shown that the HS transformation to-
gether with a convergence factor gives the asymptotic
series as well as remainder for the rigid-rotator partition
function in a fairly simply way. The present formulation
shows how to use the powerful HS transformation in
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The numerator t*¥ ! is expanded and even powers of x

are taken care of by introducing a parameter A in
exp(—x?) and taking derivatives with respect to A and
setting it to unity in the end. Only the terms linear in y
will contribute as y —0. The integrals are of the form (9)
and can be written down in terms of w(z), which is given
in terms of the confluent hypergeometric function
Fila;b;z) as [3]

w(z)=exp(—ZZH—z—l—lel(l,%,—zz). (11)

Vi

After some simplification, one finds that the remainder
Ry 4, is given by

T(N+1)
Vi

— N—1
Ry =0

k

Xz( 2k N]Fl I, —N+1,—

same as recently given by Joyce [2].
Using (2), (3), (6)-(8), (10), and (12), we find that Z(o)
at high temperatures is given by

] . (13)

many-body physics where problems of convergence may
arise. As was mentioned above, the added advantage of
the present derivation is that it can also be used if the
correction terms are to be added to the rotational energy.
This advantage is not there in the earlier derivations [2].
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